Framework for Open and Reproducible Research Training

Questionable Research Practices (QRPs) Q-Measurement-Ps P-Hacking Data Hogging HARKing Publication bias Nefarious Incentives Underpowered studies

The Enemy

Why Now? Initiatives!

\clubsuit Obstacles \bigstar

Current teaching and mentoring practices

Obstacles [1]

Teaching subject-matters without:

- probabilistic uncertainty
- research design
- Samples (type & quality)
- Measurements

Thesis Supervision

- Questionable Research Practices (QRPs)
- Q-Measurement-Ps
- P-Hacking
- Data Hogging
- HARKing
- Publication bias
- Nefarious Incentives
- Underpowered studies

HOW?

Framework for Open and Reproducible Research Training

Question

If science is a **process** of knowledge production, then **is science** education best expressed as teaching students the process or as teaching them the knowledge itself?

Possible Answer

Teaching students the accumulated knowledge, then we are not actually teaching them science. Rather, we are teaching them science's products, and indeed we are misleading them by substituting the teaching of scientific facts, as if it were the teaching of science itself (Marks, 2009, p. 22)

Science education inevitably entails learning about *how* scientist learn *what* they know.

KEY IDEAS

Purpose of Higher-ED Epistemic Uncertainty Ethics Social Justice

What is Purpose of Higher-Education?

Insofar higher education institutions aim to prepare students for an increasingly technological workforce whose advances affect everyone's lives in ever shorter time spans, its training ought to provide the compulsory knowledge for practical adjudication of scientific output.

Emphasis on Epistemic Uncertainty

Inasmuch as the verity of quantitative scientific findings hinges on probabilistic uncertainty, research design, measurements/instruments, sampling methods & representativeness, we should communicate the facts of science relative to the process by which it was acquired.

The Ethics

Merging the teaching of substantive topics with open and reproducible means **to abide by principled teaching. e.g.,** to omit educating students about the replication crisis results in a **false sense of certainty**, which can be thought as **misleading**, if not **unethical**.

The *why* of **open** *in teaching/mentoring*

Social Justice[1]

Maximize every student's likelihood of present and future engagement with resources, facilitate the acquisition of knowledge and bolster opportunities that would otherwise be inaccessible to disadvantaged individuals.

The *why* of **open** in *teaching/mentoring*

Social Justice[2]

In science, **wealthy and elite-educated** individuals are **over-represented**, as are **males**, **whites**, **and citizens of western industrialized** rich countries.

The *why* of **open** in *teaching/mentoring*

Social Justice[3]

The current model of scientific production and teaching practices **reproduces global inequalities**. And as science is built on the same foundations of society itself, **it inherits** many of its **systematic barriers** hindering the success of traditionally **marginalized groups**.

The *why* of **open** in *teaching/mentoring*

Social Justice[4]

To help mitigate the **detrimental effects** in the **access, learning and production of scientific content**, it is paramount to create the conditions for knowledge to become **a public good, accessible to all members of society.**

Summary

Teaching and **Mentoring** of reproducible and open research practices is the **clearest indicator** of the degree to which institutions and/or departments **embody principles of credible science.**

Consequences of FORRT

Framework for Open and Reproducible Research Training

FORRT Educational Nexus

- Curated
 - Reproducibility and replicability knowledge
 - Conceptual and statistical knowledge
 - Reproducible analyses
 - Preregistration
 - Open data and materials
 - Replication research
- Crowdsourced
 - As above

FORRT Assessment

6 core principles

- Reproducibility and replicability knowledge
- Conceptual and statistical knowledge
- Reproducible analyses
- Preregistration
- Open data and materials
- Replication research

	I.]	Reproducibility Crisis and Credibility RevolutionII. Conceptual and Statistic Knowledge		I. Conceptual and Statistical Knowledge	III. Reproducible analyses		IV. Open data and materials		V. Preregistration		VI. Replication research	
Attainment of a grounding in the motivations and theoretical underpinnings of reproducible and open research. Integration with field specific content (i.e., or grounded in the history of replicability)		Enacting this principle indicates that students attain a grounding in fundamental statistics, measurement, and its implications.		Reproducible analyses allow the checking of analytic pipelines and facilitate error correction. Enacting this principle requires students to move towards transparent and scripted analysis practices		Enacting this principle indicates that students have attained a grounding in open data and materials in both; using and sharing		Preregistration entails laying out a complete methodology and analysis before a study has been undertaken. This facilitates transparency and removes several potential QRPs.		Replication research takes a variety of forms, each with a different purpose and contribution. Reproducible science requires replication research.		
	i.	Reproducibility crisis and credibility revolution.	i.	The logic of null hypothesis testing, p-values, Type I and II errors (and when and why they might happen).	i.	Strengths of reproducible pipelines.	i.	Knowledge of traditional publication models. Open access publishing, preprints	i.	Purpose of preregistration - distinguishing exploratory and confirmatory analyses, transparency measures	i.	Purposes of replication attempts - what is a 'failed replication?
	ii.	Exploratory and confirmatory analyses.	ii.	Limitations and benefits of NHST, Bayesian and Likelihood approaches.	ii.	Scripted analyses compared with GUI.	ii.	Reasons to share; for science, and for one's own practices	ii.	Preregistration and registered reports - strengths and differences	ii.	Large scale replication attempts
	iii.	Questionable research practices (its 'theory'), and prevalence.	iii.	Effect sizes, Statistical power, Confidence Intervals.	iii.	Data wrangling	iii.	Repositories; e.g. OSF, FigShare, GitHub	iii.	When can you preregister? Can you pre-register secondary data?	<i>iii</i> .	Distinguishing conceptual an direct replications
	P iv.	Proposed improvement science initiatives on statistics, measurement, teaching, data sharing, code sharing, pre- registration, replication.	iv.	Research Design, Sample Methods, and its implications for inferences.	iv.	Programming reproducible data analyses.	iv.	Accessing/sharing others data, code, and materials	iv.	Writing a preregistration.	iv.	Conducting replication studie challenges, limitations, and comparisons with the origin study
	v. i	Ongoing debates, (e.g. ncentives for and against open science).	v.	Questionable research (QRPs) & measurement practices (QMPs).	v.	Open source and free software.	v.	Ethical considerations	v.	Comparing a preregistration to a final study manuscript.	v.	Registered Replication Reports
	vi.	Ethical considerations for improved practices.	vi.	Understand the relationship between all of the above.	vi.	Tools to check yourself and others; statcheck, GRIM, and SPRITE	vi.	Examples and consequences of accessing un/open data	vi.	Conducting a preregistered study.	vi.	The politics of replicating famous studies

FORRT Assessment

Breadth describes how widely teaching is distributed

- None. Not yet enacted, minimal breadth, or no evidence
- Some. Opportunities for some.
- Course requirement for all.

Depth describes the **degree** to which students interact with the core:

- None. Not yet enacted, minimal depth, or no evidence
- Knowledge.
- Practice.
- Application.

FORRT Assessment

Depth:	None	Some	Required
None			
Knowledge		As part of an optional course/module, or workshop, or lecture given; attain knowledge of the importance of reproducible analyses, including data pipelines and scripting in R/Python/JASP/SPSS/etc.	As part of a required (assessed) course/module/dissertation project; attain knowledge of the importance of reproducible analyses, including data pipelines and scripting in R/Python/JASP/SPSS/etc.
Practice		As part of an optional course/module, or workshop, or lecture given; practice implementing reproducible data pipelines and analysis scripts with existing data.	As part of a required (assessed) course/module/dissertation project; practice implementing reproducible data pipelines and analysis scripts with existing data.
Application		As part of an optional course/module, or workshop, or lecture given; implement reproducible analytical pipelines in a research project.	As part of a required (assessed) course/module/dissertation project; implement reproducible analytical pipelines in a research project.

